JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 10, No. 11, November 2008, p. 2870 - 2875

Mixed mode crack propagation in advanced materials
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We consider a pre-stressed material containing a crack of a length 2a situated in xsx2 — plane in mixed mode of classical
fracture. We suppose that the material is unbounded and the crack faces are acted by constant normal and tangential
incremental stresses. The initial applied pre-stress is in direction of the crack. Critical values of the incremental stresses and
the direction of crack propagation are determined. A numerical application for a particular case of boron-epoxy composite

is considered.

(Received September 1, 2008; accepted October 30, 2008)

Keywords: Crack, Sih’s fracture criterion, Resonance, Boron — epoxy composite

1. Introduction

We consider a homogeneous, advanced material, pre-
stressed and corresponding to a plane state. The advanced
material represents an unbounded elastic composite
containing a crack of a length 2a situated in x;x; — plane
and its faces are acted by constant incremental stresses p
making an angle f with Ox, — axis. The initial applied
stress 6y is in direction of the crack, as is shown in Fig. 1.

Our first aim is to determine the elastic state produced
in the body using Guz's representation of incremental
fields.

Our second aim is to determine the critical values of
the incremental stresses and the direction of crack
propagation. To do this, we use Sih's generalized fracture
criterion for orthotropic elastic composite.

In the last part, using numerical analysis, we obtain
for a crack in mixed mode in a pre-stressed boron - epoxy
composite the critical values of the stresses which produce
crack propagation and the direction of propagation.

2. Guz’s representation of the incremental
fields

The representation of elastic fields by complex
potential in the classical case of anisotropic elastic bodies
was given by Leknitskii [1]. This representation was used,
for instance, by Sih and Leibowitz [2] to analyze problems
concerning the existence of a crack in an anisotropic
elastic solid. The results obtained by Leknitskii were
generalized for the case of a pre-stressed material by Guz
[3-4] who also has analysed the influence of the initial
stresses on the behavior of a solid body containing cracks.

We assume that the orthotropic, initial deformed
composite material is in plane state relative to the x;x,
plane. As we already know in this case, the incremental
displacement field can be expressed by two real potential

oY, ¢@, which satisfy the incremental equilibrium

equations (see [3] —[6]):
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In their turn the elastic coefficients can be expressed

using the engineering constants of the material and we
have the following:
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In above relations E;, E, Ej are Young’s moduli in
corresponding directions of material, v;,, ..., v3, are
Poisson’s ratios and G, G3, G3; are the shear moduli in
the corresponding symmetry planes.

In what follows, we assume ¢(2)(x1 , X, ) =0 and, in
order to simplify the writing, we use the notation

(P(l)(xl » X ) = (p(xl s Xy )
According to (1), @ = qo(xl R xz) must satisfy
equation

2 2 2 2
[8 +7726J(a +772262j(/):0s7712¢7722~ (7)

gf b ox? @ Ox,

According to Guz’s representation (see [3] — [5]), the
incremental displacement fields u; and u, are expressed in

terms of @ = ¢(1) by the relations

U, = _(wnzz + 0, )(p,lzv
Uy =0 P+ Oy120 ) - ®)

Let us introduce now the quantities v; and v, defined
by

V= _7712: vV, = _7722- )

Now, the differential equation (7) becomes
0’ o’ | o’ 0’
-V -V p=0. (10
ox; 1 ox; )\ ox; ? ox;

Also, from (2) and (9), it follows that v; and v, satisfy
the following algebraic equation

vi424v+B=0. (11)

Hence,

v, =—A—A*-B,

v,=—A+~NA*-B. (12)

Also, it can be seen that the differential equation (10)
can be written in the following equivalent form:

0 — 0O 0 0
—_— _ — 4 .
(ﬁxz " ox, ](ﬁxz \/V_lﬁxl]

0 0 0 0
==V, — | —+V, — lp=0
(8x2 " 0ox, J[@xz " Ox, J(D

Let us introduce now the parameters ,ulz and /Uzz
defined by equations

M=V, 5 =V (14)

From (11), we can conclude that u; and u, satisfy the
algebraic equation

ut+24u° +B=0. (15)

We assume that the initial deformed equilibrium
configuration of the body is locally stable. We can
conclude that the equation (15) cannot have real roots (see
[5]). Consequently, from (14) we can conclude that the
roots v; and v, must satisfy one of the following two
conditions:

() Imv; #0 or
2) Imv; =0and Rev; <0, j=12. (16)

We denote by u;, t, 13, 14 the complex roots of the
equation (15). These roots are determined by

If Imv; # 0, we have v, =V, and we take

My = Vls,uz:_\/Zv

s =Avy =, py ==V, =u, . a7

If Imvj =0 and Revj <0, we take

Hy = Vl_uuzz\/Zv B
,u3:_\/V_1:,u1a,u4:_\/Z:,uz~ (18)

Now, we can see that equation (13) can be expressed
in the following equivalent form:

o _,00°e 9
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We introduce now the independent complex variables

Zy =X Y U X,,Z, =X+ [, x,. (20)

From these relations, we get

Zy =Xt WX,,2, =X+ WX, 21
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Since 4, # IL,, we can see now that the differential

equation (19) can be expressed in the following equivalent
form:

4
Y (22)
0z,0z,0z,0z,

The general solution of this equation is

(0:(/’(x15x2):_f1(21)+g1(z_1)+ 23)
+fz(Zz)+g2(Zz)-
where  f =fj(Zj) and g, =gj(z_j),j=l,2, are

arbitrary analytic functions of the complex variables z j

and z, , respectively.

We recall now that (p=(p(xl,x2) is a real valued
function. Hence, we must have

g/(Z‘/)z file; b j=12.

Thus, we can conclude that the real displacement
potential @ = (D(X1 ,xz), satisfying the  differential
equation (7) can be expressed in terms of two arbitrary

analytic functions f, = f; (Z1 ) and f, = f, (22 ), by the
following relation due to Guz [3]:

50:(o(xnxz):Jfl(zl)"'m"‘fz(zz)"'m
:2Re{ 1(Zl)+f2(zz)}

Let us introduce now the analytical functions

F (Z_/): (0)1122 T @y )f/ (Z_/ )’ J=12.(25)
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Thus, from (18), we get
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We introduce the functions @, =@, (Zj ), j=12, by

the following rule:
q)j (Zj)z ”‘/B‘/ (wnzz + @y, )_1 FJ-"(ZJ- ), 27

where

_ 2
B, = @y, 01, 1 + @11 Dy —
~— Oy (0)1122 + 0)1212)
_ )
=0 O M — Wy, W)y, F

T @y, (a)1122 T 0y, ) .

(28)

In order to obtain the second expression of B;, we
have used the fact that y; satisfy the algebraic equation
(15), 4 and B being given by the relation (3).

After long but elementary computations, we get the
representation of the incremental fields by two arbitrary

analytic complex potentials @, =® |z j) and their

derivatives ¥, =¥, (Zj), j=12:
0y = 2Re{‘Pl (Zl)+ Y, (Zz )}’ 29)
0, =2 Re{alﬂllPl (Zl )+ a, i, (Zz )}7 (30)
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We  denoted by ¥, (Z J.) the derivates of

®,(z,) j=12,ie

J
&%(Zf),jﬂ,z.(sg)

Z;

It can be shown that the parameters £¢,, j =1,2 satisfy

the relations

Im(g, 12, )= 0 and Re(g, + 2,)=0. (39)
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We assume that the parameters £¢,, j = 1,2 are different,

ie.

Hy # - (40)

The  expressions of the complex  potentials

v, (Z ; ), J =12 corresponding to our mixed mode are

a,u,K, +K 1
¥ (2 214025 o . ’
@) 22mA x(p)
a, K, +K 1
¥ (z.)= 1H1 /. 41)
:(22) 22mA 1,(p)
where
A=ayu, —ap,
:\/cos¢+ujsingo. (42)
and

K, = psin® pm
K, = psinﬂcosﬂ%. (43)

are the stress intensity factors corresponding to the first
respectively second mode of fracture for an applied load

p>0.

3. Sih’s generalized fracture criterion for a
mixed fracture mode

Let us denote by W the incremental strain energy
density, i.e.

1

WZEHk’]u,’k, k=12, (39)
where
u,, = % (40)
b ox, '

Let r and ¢ being the radial distance from the crack tip
and the angle between radial direction and the line ahead
the crack, as in Fig. 1. After long manipulations we obtain
that near the considered crack tip the strain energy has a
singular part as well a regular part, i.e.

W(r, ,u) = @ +a regular part . (41)
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Fig. 1. Mixed mode crack propagation.

Here S(go) is Sih’s incremental strain energy density
factor and is given by

S((p): (allulKI +K, )(azluzKI +K11)

e S, (@)
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and
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We generalize the Sih’s fracture criterion (see [2]) for

orthotropic or pre-stressed elastic materials, assuming that:

HI: Crack propagation will start in a radial direction ¢,

along with the incremental strain energy density S ((0) is
a minimum, i.e.
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ds d*S
(p.)=

= ,—(p.)>0. 44
00 d¢2(¢c)> (44)

H2: The critical intensity
SC = Smin = S(Q: ) (45)

governs the onset of the crack propagation and it
represents a material constant independent the crack
geometry, loading and initial stress.

Using (42) and (45) we get for the incremental stress
P, for which the crack will start to propagate at critical
direction ¢, the following equation:

4
aP’ = e (46)

©sule)
Once S, is known, the relation (46) can be used to get
P..

4. Numerical results and conclusions.

In this section we shall consider the case of a boron-
epoxy composite material characterized by the following
parameters:

E, =190GPa, E,=E, =10GPa,
G, =7GPa, G,; =G, =6GPa,
v, =03, v;=v,=02. (47)

For a composite material is a critical value o, of the
initial applied stress o, for which such than when o

tends to 0 , the incremental stress P, converges to zero,

and it is given by:

‘ G
o8 ==Gpil——2(1-vv;, ) < 0.(48)

=2

For our composite material one gets the following
value:

ol =—6.839. (49)

So, in our study we shall consider
o, e(— 6.839,0]. From our numerical analysis we

observe that:

—the strain energy density S, (gp) depends in a very
small manner by o, and in this case the propagation

angle is in a neighborhood of 70, as in Fig. 2.
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Fig. 2. Representation of the function S, versus (0 and O .

— the critical intensity density factor S, decreases when

[ decreases and the initial pre-stressed O, doesn’t play
an important role in this case due to the fact that
o, <FE, << E,, asinFig. 3.
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Fig. 3. Representation of the critical intensity of the
strain energy density factor S versus ﬂ and O .

— for different values of the angle [f we obtain that the

minimum of § ((p, o, ) is obtained for a critical value @,_,

as in Fig. 4.
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Fig. 4. Representation of the the strain energy density factor S versus () and O, for different angles ﬂ .
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Fig. 5. Incremental stress P versus (0 and O,.

When £ =0 and the material is unpre-stressed

o, =0, we observe that ¢, = 0, an well-known result,
i.e. in the Mode I of fracture, the crack will propagate
along its line.

— using eqs. (46) we found the critical incremental stress

P which produces the initialization of crack propagation,

as in Fig. 5.
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